1. Describe the symmetry of an EVEN function.

The graph must be symmetric with respect to the y-axis. (i.e. If we reflected the right half of the graph over the y-axis, it would perfectly match up with the left half of the graph. \(f(-x) = f(x) \))

2. Describe the symmetry of an ODD function.

The graph must be symmetric with respect to the origin. (i.e. If we first fold the graph in half along the y-axis and then fold the graph in half along the x-axis, it would perfectly match the graph in the 3rd quadrant. Alternately, you could also rotate the graph 180° about the origin and there would be no change. \(f(-x) = -f(x) \))

3. Describe each graph as EVEN, ODD, or NEITHER
4. Describe the definition in function notation of every EVEN function.

\[f(-x) = f(x) \]

5. Describe a definition in function notation of every ODD function.

\[f(-x) = -f(x) \]

6. Describe each function below as EVEN, ODD, or NEITHER

a. \(f(x) = x^2 + 5 \)

\[f(-x) = (-x)^2 + 5 = f(x) \]

b. \(g(x) = x^3 - 2x \)

\[g(-x) = (-x)^3 - 2(-x) = -x^3 + 2x \]

\[g(-x) = - (x^3 - 2x) = - g(x) \]

7. If \(f(2) = 3 \) and \(f(x) \) is an EVEN function, what other point must be on the graph of \(f(x) \)?

\(f(2) = 3 \)

\[\begin{align*}
 f(-x) &= f(x) \\
 f(-2) &= f(2) = 3 \\
 (-2, 3) &\quad \text{and} \quad (2, 3)
\end{align*} \]

8. If \(g(2) = 3 \) and \(g(x) \) is an ODD function, what other point must be on the graph of \(g(x) \)?

\(g(-x) = -g(x) \)

\[\begin{align*}
 g(-2) &= -g(2) = -3 \\
 (-2, -3) &\quad \text{and} \quad (2, 3)
\end{align*} \]

9. If the partially graphed function below is EVEN then finish what the rest of the graph should look like.

\[f(-x) = f(x) \]

10. If the partially graphed function below is ODD then finish what the rest of the graph should look like.

\[f(-x) = -f(x) \]