Rene’ Descartes is commonly credited for devising the **Rational Root Theorem**.

The theorem states: Given a polynomial equation of the form

\[0 = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n \]

Any rational root of the polynomial equation must be some integer factor of \(a_n \) divided by some integer factor of \(a_0 \)

Given the following polynomial equations, determine all of the “POTENTIAL” rational roots based on the Rational Root Theorem and then using a synthetic division to verify the most likely roots.

1. \(x^3 + x^2 - 8x - 12 = 0 \)

 Potential Rational Roots:
 \[\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \]

 Actual Roots: \(3, -2, -2 \)

2. \(4x^3 - 12x^2 + 5x + 6 = 0 \)

 Potential Rational Roots:
 \[\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{4}, \pm \frac{1}{4}, \pm \frac{3}{2} \]

 Actual Roots: \(\pm 2, \pm \frac{1}{2}, \pm \frac{3}{2} \)

The Remainder Theorem suggests that if a polynomial function \(P(x) \) is divided by a linear factor \((x - a) \) that the quotient will be a polynomial function, \(Q(x) \), with a possible constant remainder, \(r \), which could be written out as:

\[P(x) = (x - a) \cdot Q(x) + r \]

If this seems a little complicated consider a similar statement but just using integers. For example (using the same colors to represent similar parts), \(70 \div 6 = 11 \) with remainder 4 which could also be rewritten as: \(70 = 6 \cdot 11 + 4 \)

The Remainder Theorem also leads to another important idea, **The Factor Theorem**. To state the Factor Theorem, we only need to evaluate \(P(a) \) from the Remainder Theorem.

\[P(a) = (a - a) \cdot Q(a) + r \]

:Substitute “a” in for each “x”

\[P(a) = (0) \cdot Q(a) + r \]

:Simplify \((a - a) = 0\)

\[P(a) = r \]

:Simplify \(0 \cdot Q(a) = 0\)

This is an important fact that basically states the remainder of the statement \(P(x) \div (x - a) \) is \(P(a) \).
Using the Remainder or Factor Theorem answer the following.

3. **Using Synthetic Division evaluate**

\[x^3 + x^2 - 8x - 12 \text{ when } x = 3 \]

\[\begin{array}{c|cccc}
3 & 1 & 1 & -8 & -12 \\
\hline
& 3 & 12 & 12 & 0 \\
\end{array} \]

\[x^3 + x^2 - 8x - 12 = (x-3)(x^2 + 4x + 4) \]

\[P(3) = (3)^3 + (3)^2 - 8(3) - 12 = 0 \]

4. **Use Synthetic Division to find the remainder**

\[\text{of } \frac{x^3 + x^2 - 8x - 12}{x-3} \]

\[\begin{array}{c|cccc}
3 & 1 & 1 & -8 & -12 \\
\hline
& 3 & 12 & 12 & 0 \\
\end{array} \]

5. **Using Synthetic Division evaluate** \(f(-2) \) **given**

\[f(x) = 3x^4 + 7x^2 - 8x + 12 \]

\[\begin{array}{c|cccc}
-2 & 3 & 0 & 7 & -8 & 12 \\
\hline
& -6 & 19 & -46 & 104 \\
\end{array} \]

\[3x^4 + 7x^2 - 8x + 12 = (x+2)(3x^3 - 6x^2 + 19x - 46) + 104 \]

\[f(-2) = 3(-2)^4 + 7(-2)^2 - 8(-2) + 12 = 104 \]

6. **Use Synthetic Division to determine the**

quotient of \(f(x) \) **and** \(g(x) \), **given**

\[f(x) = 3x^4 + 7x^2 - 8x + 12 \text{ and } g(x) = x + 2 \]

\[\begin{array}{c|cccc}
-2 & 3 & 0 & 7 & -8 & 12 \\
\hline
& -6 & 19 & -46 & 104 \\
\end{array} \]

\[3x^4 - 6x^2 + 19x - 46 + \frac{104}{x+2} \]

7. **Given** \(f(x) = (x + 5) \cdot Q(x) + 8 \), **evaluate** \(f(-5) \).

\[f(-5) = (-5 + 5)Q(-5) + 8 \\
= 0 \cdot Q(-5) + 8 \\
= 0 + 8 \\
= 8 \]

8. **Given** \(\frac{f(x)}{x-6} = Q(x) \) **with a remainder 3, evaluate** \(f(6) \).

\[f(x) = (x-6)Q(x) + 3 \\
= (6-6)Q(6) + 3 \\
= 0 \cdot Q(6) + 3 \\
= 3 \]

9. **Consider** \(f(x) = 2x^3 - x^2 + 3x + 4 \) **and that** \(f(b) = 5 \)

\[\begin{array}{c|cccc}
b & 2 & -1 & 3 & 4 \\
\hline
& 2 & -5 & b & 5 \\
\end{array} \]

What value should be in box labeled “a”?

10. **Consider** \(g(x) = x^3 + 3x^2 - 2x + 4 \) **and Justin used synthetic division to divide** \((x^3 + 3x^2 - 2x + 4) \) **by** \((x - k) \). **His work is partially shown below. Using this information determine** \(f(k) \).

\[\begin{array}{c|cccc}
k & 1 & 3 & -2 & 4 \\
\hline
k & ka & kb & c & f(k) = C \\
\end{array} \]

\[\frac{x - k = 0}{+k + k} \]

\[\frac{x = k}{1 a b c} \]

\[f(k) = C \]

\[C \]
Using any available techniques determine the following (find exact answers).

11. Find all of the solutions to the polynomial equation \(x^4 - 3x^3 + 6x^2 - 12x + 8 = 0 \)

12. Find all zeros of the polynomial function \(f(x) = x^4 - 4x^3 + x^2 + 8x - 6 \)